

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level In Mathematics Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code WST03_01_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

June 2018 WST03/01 Statistics 3 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2018 IAL - WST03/01 Statistics 3

Question					Sche	me						Marks
Number	F (1 11	4	D	C	1		Г	C		T		TTURK5
1. (a)	Footballe Rank <i>x</i>	r A	<i>B</i> 2	C 3	D 4	<i>E</i> 5	<i>F</i> 6	G 7	H 8	<i>I</i> 9		
	Rank <i>x</i> Rank <i>y</i>	6	2 9	3 8	4	5	0 4	7	8	9		
	Rank <i>y</i>	9	8	8 7	6	5	4	3	2	1		M1
	Rank y	4	0	2	8	5	6	3	7	9		1111
		5 + 49 + 2		l		l			<u> </u>			M1 A1
	$r_{\rm S} = 1 \frac{6}{90}$	$\frac{6(196)}{(9^2 \ 1)};=$	0.633	33333.	or	$\frac{19}{30}$						dM1; A1
												[5]
(b)	$H_0: \rho_s =$	0, $H_1: \rho_s$	< 0									B1
	Critical V	alue = ().60000	or 0.6	or C	R: $r_{\rm s} \leq$	≤-0.60	000				B1
	Since $r_{\rm s} =$	= 0.6333.	lies i	n the C	R (or	0.633	3< 0	.6), rej	ect H ₀			M1
	Either cor		aim is <u>t</u>	rue							Conclusion in context	A1
			<u></u>			10 101						[4]
(c)	Both Criti	ical Value ie in the C							<u>H</u> 0 (or a	ccept H	I ₀)	M1
	Conclude	that there	is <u>no n</u>	egative	correla	ation oe	<u>)</u>			Contex	t not required here.	A1
(d)	The relations is non-line	onship (be ear oe	tween	BMI an	d time	taken t	o comp	lete the	e obsta	cle cou	rse)	[2] B1
								1 1 4				[1] 12
1. (a)	1 st M1	Attempt	to rank	data fo	r r and		estion			(allow	reverse rankings)	
1. (a)	2 nd M1	-				•						
		For findi $d^2 - d^2$	-								8	- 11
	1 st A1 $d^2 = 196$ or from reverse rankings $d^2 = 9 + 1 + 1 + 16 + 0 + 0 + 16 + 1 + 0$										- 44	
	3rd dM1 is dependent on 1 st M1 for use of 1 $\frac{6("196")}{9(9^2 \ 1)}$ with their d^2 .											
	2 nd A1	awrt 0.										
(b)	1 st B1 Both hypotheses stated in terms of or ρ_s .											
	Note 2 nd B1	One tail Critical v			mpatib	le with	their ra	nking.				
	M1	For a cor	rect sta	tement	relatin	g their	$r_{\rm s} \left(r_{\rm s} \right)$	<1) w	ith the	ir c.v. v	where their c.v. <1	
	A1		ntextua	lised co	mmen	t which	is reje	cting H	l ₀ , whic	h must	mention either "neg	gative
	Note	Follow th						1		1		
(c)	M1	Allow ± Use of -	0.5822	Ι	gnore l	nypothe						

Question Number				Scheme	;			Marks		
2. (a)	$\hat{p} = \frac{7(3) + 12}{12}$	+ 8(5) + (3+5+)	9(18) + 10	(28) + 11(17) (17 + 4) or 1	$\frac{7}{2(75)} + \frac{12(4)}{9} = \frac{7}{9}$	$\frac{38}{00} = 0.82(*)$	Answer is given. See notes.	M1 A1cso		
(b)	$r = 75 {}^{12}C_9(0.82)^9(0.18)^3 \{= 16.1296941\}$ (formula)									
	s = 75 (2.80 + 7.97 + their $r + 22.04 + 18.26 + 6.93$)									
	r = 16.1296941; s = 0.87 $r = awrt 16.13; s = awrt 0.87$									
(c)			ribution is a ribution is 1		or good) model ((or fit)		[3] B1		
				Comb	Comb	$(O E)^2$	O^2			
	#	O_i	E_i	O_i	E_i	$\frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$	$\frac{O_i^2}{E_i}$			
	- 6	0	0.87	O_i		E_{i}				
	≤ 6	03	2.80	8	11.64	1.1383	5.4983			
	8	5	7.97	0	11.04	1.1565	5.7705			
	9	18	16.13	18	16.13	0.2168	20.0868	M1		
	10	28	22.04	28	22.04	1.6117	35.5717	N/1		
	11	17	18.26	17	18.26	0.0869	15.8269	M1		
	12	4	6.93	4	6.93 Totals	<u>1.2388</u> 4.2925	2.3088 79.2925			
	$\frac{10 \text{ tais}}{X^2 = \text{ awrt } 4.3}$									
	v = 5 1							A1 B1 ft		
			\Rightarrow CR: X	$^{2} > 6.251$				B1 ft		
								DIR		
	[does not lie in the CR/not significant/Do not reject H ₀ /Accept H ₀]									
	Binomial distribution is a suitable A correct conclusion (context not required here) which									
	model. is based on <i>their</i> X^2 -value and <i>their</i> χ^2 -critical value.									
					Question 2					
2. (a)	<u>M1</u>						sion for their method			
(b)	A1 cso			_	rith no incorrect		than you a			
(b)	M1 A1; A1		wrt 16.13;			sion) for finding ei				
(c)	1 st B1		·			nomial at least onc	е.			
	1^{st} B1Must have both hypotheses and mention Binomial at least once.Inclusion of 0.82 for p in hypotheses is B0 but condone in conclusion.									
	1 st M1									
	2 nd M1	For an attempt at the test statistic, at least 2 correct expressions/values								
	1 st A1	awrt								
	2 nd B1ft						tract 2 from their <i>n</i> .			
	3 rd B1ft					eir degrees of freed				
	Note	For 0	.10 signific	ance: $\chi_6^2 =$	= 10.645 $\chi_5^2 = 10.645$	9.236 $\chi_4^2 = 7.77$	9 $\chi_2^2 = 4.605$			
	Final A1				od mark only.					
						which is accepting				
	Note No follow through on their hypotheses if they are stated the wrong way round.									
	Note Note									

Question Number		Scheme	Mar	ks
3. (a)	$\begin{cases} \hat{x} = \overline{x} = \\ \end{bmatrix}$	$=\frac{92.0}{20} \Rightarrow \overline{x} = 4.6 \text{ (cm)} $ 4.6	B1	
		$s_x^2 = \frac{433.4974 20(4.6)^2}{20 1} = 0.541968 (cm)^2$ Applies $\frac{x^2 20(\text{their } \overline{x})^2}{20 1}$	M1	
		20 1 awrt 0.542	A1	
(b)	Combine	ed Sample: Mean $=\frac{92.0 + 142.5}{20 + 30} = 4.69$ Can be implied.	B1	[3]
			M1;	
	$s^2 = \frac{155}{2}$	$\frac{.4974 + 689.5078 50(4.69)^2}{20 + 30 1}; = 0.4734734694$ awrt 0.473 or 0.4735 (can be implied)	A1	
	s _ √(D.4734734694 For use of $s/\sqrt{50}$	M1;	
	$\overline{\sqrt{n}} = -$	$\frac{0.4734734694}{\sqrt{50}}; = 0.09731119868$ For use of s/\sqrt{50} awrt <u>0.0973</u>	A1	
				[5]
(c)	$H_0: =$	4.5 H_1 : > 4.5 Correct hypotheses	B1	
	$z = \frac{"4.6}{}$	$\frac{59'' \ 4.5}{0.71}; = 1.892257583 \qquad \pm \frac{\text{their } 4.69 \ 4.5}{\frac{0.71}{\sqrt{52}}} \text{ or equivalent.}$	M1;	
		$\sqrt{50}$ awrt 1.89	A1	
		d c.v. $Z = 1.6449$ or CR: $Z \ge 1.6449$ the = awrt 0.029 or awrt 0.029 < 0.05 Critical value of 1.6449 or a correct probability	B1	
	[in the C]	$\frac{1}{10000000000000000000000000000000000$		
	Conclude • there	A correct conclusion which is	A1	
				[5]
		Question 3 Notes		13
3. (a)	M1	Also allow M1 for applying $\frac{20}{(20-1)} \left(\frac{\sum x^2}{20} (\text{their } \overline{x})^2 \right)$		
(b)	1 st M1	Also allow 1 st M1 for applying $\frac{50}{(50-1)} \left(\frac{\sum x^2 + \sum y^2}{20 + 30} (\text{their } \overline{x}_{\text{comb}})^2 \right)$		
	Note	Award B1M1A1M1A1 for awrt 0.0973 which follows from no working.		
(c)	1 st M1 2 nd A1	Condone use of 4.6 for this M1 mark. Conclusion must refer to either "farmer's claim" oe or "mean width" and "eggs".		

	Scheme									
4. (a)	warehouse.					000 employees is the <u>same</u> at each 000 employees is <u>not the same</u> .	B1			
	Warehouse	e Calcula	tion	Expected		Some attempt at using the correct formula to find their 5				
	A	12				expected values (expected number of incidents). Can be implied by at least one				
	В	<u>(1)(11</u> 12		9.5		correct E_i .				
	С	$\frac{(3.8)(1)}{12}$		36.1						
	D	<u>(3)(11</u> 12		28.5	;	All expected frequencies are correct.	A1			
	E $\frac{(2.2)(114)}{12}$		14)	20.9						
	Observed	Expected	$\frac{(O-E)^2}{E} \qquad \frac{O^2}{E}$ Dependent upon previous M							
	15	19			11.8421	At least 3 correct terms for	dM1			
	10	9.5	0.0263		10.5263	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$				
	40	36.1	0.42	13	44.3213					
	26	28.5	0.219	93	23.7193	Accept 2 sf accuracy for the dM1 mark.				
	23	20.9	0.21	10	25.3110	for the divit mark.				
		Totals	1.72		115.72					
	$X^{2} = \sum \frac{(O-E)^{2}}{E}$ or $\sum \frac{O^{2}}{E} - 114 = \text{awrt } 1.72$ awrt <u>1.72</u>									
	= 5 1 = 4 $\chi_4^2(0.05) = 9.488 \Rightarrow CR: X^2 \ge 9.488$ 9.488									
	[not in the CR/not significant/Do not Reject H ₀ /Accept H ₀]									
	Conclude either: • <u>manager's claim is supported</u> • that the mean number of reported first-aid <u>incidents per 1000 employees is the same at</u> and <i>their</i> χ^2 -critical value.									
	each warehouse.									
(b)	Select every				2		B1			
	{having chosen the first record by} selecting a random number.									
					Question	4 Notos				
					Question	4 Notes				

Observed	Expected	$\frac{(O-E)^2}{E}$		
7.5	9.5	0.4210	-	
10	9.5	0.0263		
10.5	9.5	0.1108		
8.6	9.5	0.0730		
10.4	9.5	0.0959		
	Totals	0.727		
Expected va	lues of 9.43		I	
			t of 7) $\frac{O^2}{E}$	
Expected va	lues of 9.43	used $(O-E)^2$	I	
Expected va Observed	Lues of 9.43 Expected	used $\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$	
Expected va Observed 7.5	Expected 9.43	used $\frac{(O-E)^2}{E}$ 0.3948	$\frac{O^2}{E}$ 5.965	
Expected va Observed 7.5 10	Lues of 9.43 Expected 9.43 9.43	. used $\frac{(O-E)^2}{E}$ 0.3948 0.0345	$ \frac{O^2}{E} 5.965 10.6050 $	
Expected va Observed 7.5 10 10.5	Lues of 9.43 Expected 9.43 9.43 9.43	. used $\frac{(O-E)^2}{E}$ 0.3948 0.0345 0.1275	$ \begin{array}{c} \frac{O^2}{E} \\ 5.965 \\ 10.6050 \\ 11.7507 \end{array} $	
Expected va Observed 7.5 10 10.5 8.6	Lues of 9.43 Expected 9.43 9.43 9.43 9.43	. used $\frac{(O-E)^2}{E}$ 0.3948 0.0345 0.1275 0.0617	$ \begin{array}{c} \frac{O^2}{E} \\ 5.965 \\ 10.6050 \\ 11.7507 \\ 7.9655 \\ \end{array} $	

Question Number		Scheme			Marks
5.	95% CI fe	or is (30.612, 31.788); c% CI for	is (30.66, 31.74)		
(a)	$\frac{2(1.96)}{\sqrt{25}}$	$= 31.788 30.612 \{= 1.176\}$	$\frac{2"z"}{\sqrt{25}} = 3$	31.788 30.612	M1 oe
	N 23			1.96	B1
	$\begin{cases} \Rightarrow = - \\ \hline \end{array}$	$\frac{(1.176)(5)}{2(1.96)} \Rightarrow = 1.5$		= 1.5	A1
					[3]
(b)	$\frac{2z(1.5)}{\sqrt{25}} =$	= 31.74 30.66 {= 1.08}	$\frac{2z("1.5")}{\sqrt{25}} =$	31.74 30.66	M1 oe
		$\frac{1}{(5)} \rightarrow z = 1.8$		<i>z</i> = 1.8	A1ft
	$\left[\frac{c}{100}\right]$	2(0.9641)-1	2 (the	eir "1.8") 1 oe	M1
	c = 92	2.8 (3sf)		awrt <u>92.8</u>	A1
					[4]
		0.00	stion 5 Notos		7
			stion 5 Notes	-612 + 21.779	
5. (a)	M1	Also allow M1 (oe) for $31.2 + \frac{\text{"their } z}{\sqrt{25}}$	$= 31.778$, where $31.2 = \frac{30}{2}$	$\frac{5.012 + 51.778}{2}$	
(b)	1 st M1	Also allow M1 (oe) for $31.2 + \frac{z(\text{their})}{\sqrt{2}}$	$\frac{(1.5'')}{25} = 31.74$, where $31.2 =$	$\frac{30.66 + 31.74}{2}$	
	1 st A1ft 2 nd M1 Note	For a correct (ft) expression using their awrt 0.928 implies this mark Use of 1.6449 gives $\sigma = 1.787$ and 1		9 (3sf) (M1A1	ftM1A0)

Question Number	Scheme	Marks
6.	Y has a continuous uniform distribution $\begin{bmatrix} a & 3, a+6 \end{bmatrix}$	
(a)	$E(Y) = \frac{a+6+a-3}{2} \left\{ = \frac{(2a+3)}{2} \text{ or } a+\frac{3}{2} \right\}$	M1
	Var(Y) = $\frac{(a+6-a+3)^2}{12} \left\{ = \frac{81}{12} \text{ or } \frac{27}{4} \text{ or } 6.75 \right\}$ May be implied	i M1
	$\overline{Y} \sim N\left(a + \frac{3}{2}, \frac{9}{80}\right) \qquad \qquad N\left(a + \frac{3}{2}, \frac{9}{80}\right)$	A1
		[.
(b)	$13.4 2.3263 \sqrt{\frac{9}{80}} < <13.4 + 2.3263 \sqrt{\frac{9}{80}} \qquad $) M1
(0)	$\frac{13.4}{80} = 2.3203 \sqrt{\frac{80}{80}} < <13.4 \pm 2.3203 \sqrt{\frac{80}{80}} $ 2.326	3 B1
	$13.4 2.3263\sqrt{\frac{9}{80}} < a + \frac{3}{2} < 13.4 + 2.3263\sqrt{\frac{9}{80}}$	
	13.4 $2.3263\sqrt{\frac{9}{80}} + 4.5 < a + 6 < 13.4 + 2.3263\sqrt{\frac{9}{80}} + 4.5$ $13.4 \pm "z" (their SE_{\overline{y}}) + 4.5$	5 M1
	17.11973576 < a + 6 < 18.68026474 awrt (17.1, 18.7)	A1
		[4
	Alternative Method for part (b)	
(b)	$13.4 2.3263 \sqrt{\frac{9}{80}} < <13.4 + 2.3263 \sqrt{\frac{9}{80}} \qquad $	
. ,		3 B1
	11.11973526 < <i>a</i> < 12.68026474	
	$11.11973526+6 < a + 6 < 12.68026474+6 \qquad 13.4 \pm "z" (their SE_{\bar{Y}}) 1.5 + 6$	6 M1
	17.11973576 < a + 6 < 18.68026474 awrt (17.1, 18.7)	A1
	Question 6 Notes	
(b)	 1st M1 The inequalities may be seen separately. For only considering 1-tail of confidence int (usually the upper tail) allow access to 1st M1 only (so M1B1M0A0 is possible). A second division of their SE by 60 is 1st M0 	erval

Question Number		Scheme		Marks
7. (i)	A N(2	$(1, 2^2)$, B N(32, 7 ²) and C N(45, 9 ²)	A, B, C are independent.	
(a)	T = A +		~	
	E(T) = 1	$21+32+45$ or $Var(T) = 2^2 + 7^2 + 9^2$	A fully correct method of finding $E(T)$ or $Var(T)$	M1
	E(T) =	98 and $Var(T) = 134$	Both $E(T) = 98$ and $Var(T) = 134$	A1
	{So <i>T</i>	~ N(98,134) }		
	$\left\{ \mathbf{P}(T > \mathbf{P}) \right\}$	$P(0) = P\left(Z > \frac{90 - 98}{\sqrt{134}}\right)$	Standardising (\pm) with their mean and their standard deviation	M1
		= P(Z > 0.69109)		
		= 0.7549 (or 0.75525)	awrt <u>0.755</u>	Al
				[4]
(b)	$\Big\{ \mathbb{P}(A >$	$B) = \mathbf{P}(A B > 0) \Big\}$		
	E(A B	$3) = 21 32 \text{ or } Var(T) = 2^2 + 7^2$	A fully correct method of finding $E(A \ B)$ or $Var(A \ B)$	M1
	E(A A	$B = 11 \text{ and } Var(A \ B) = 53 $	Both $E(A \mid B) = 11$ and $Var(A \mid B) = 53$	A1
	{So <i>A</i>	<i>B</i> N(11,53)}		
	∫D(4	$B > 0$ } $\Rightarrow P\left(Z > \frac{0 - 11}{\sqrt{52}}\right)$	Standardising (\pm) with their mean	M1
	l ^Γ (A	$B > 0) f \rightarrow P\left(2 > \sqrt{53}\right)$	and their standard deviation	111
		= P(Z > 1.510966)		
		= 0.06539855 (or 0.0655)	<u>0.0655</u> or awrt <u>0.0654</u>	A1
		-		[4]
(ii)	$\left\{ P(X_1 > X_1) \right\}$	$\overline{X} + k$ $= 0.1$ $P(X_1, \overline{X} > k) = 0.1$		
	$X_1 - \overline{X};$	$\left\{ = X_1 - \frac{(X_1 + X_2 + X_3 + X_4)}{4} = \frac{3X_1 - (X_2)}{4} \right\}$	$\frac{(X_{3} + X_{4})}{4} $ For attempting to find the distribution of $X_{1} - \overline{X}$	M1
	$E(X_1 -$	\overline{X}) = 0	Correct mean	A1
	· 1		2) Correct expression for Var (X, \overline{X})	dM1
	$\operatorname{Var}(X_1)$	$(-\bar{X}) = \frac{9\sigma^2 + 3\sigma^2}{4^2}; \implies X_1 - \bar{X} \sim N(0, 0.75\sigma)$		A1
	$\left\{ \mathbf{P}(X_{1})\right\}$	$\overline{X} > k$ $= 0.1 \Rightarrow P\left(Z > \frac{k \cdot 0}{\sqrt{0.75^{-2}}}\right) = 0.1$		
			Standardising using their $\sqrt{\operatorname{Var}(X_1 - \overline{X})}$.	
	So, $\frac{k}{\sqrt{0.7}}$	$\frac{1}{75} = 1.2816$	Note that must cancel and equating to a z -value, $ z > 1$.	M1
			1.2816	B1
	$\left\{k=\sqrt{0}\right\}$	$\overline{75} (1.2816) \bigg\} \qquad k = 1.109898157$	awrt <u>1.11</u>	A1
				[7]
		Ouestion	n 7 Notes	15
7. (i) (a)	1 st M1	Can be implied by either a correct $E(T)$ of		
(i) (b)		Allow equivalent method using $B - A < 0$		
(ii)	Final A1	Dependent upon all previous M marks in (i	i)	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom